

Munich Center for Machine Learning

Causal ML for predicting treatment outcomes

Prof. Stefan Feuerriegel & Valentyn Melnychuk

Institute of AI in Management LMU Munich https://www.ai.bwl.lmu.de

VISION Promises of Causal ML

Munich Center for Machine Learning

Why do we need Causal ML in medicine?

Reference:

Feuerriegel, S., Frauen, D., Melnychuk, V., Schweisthal, J., Hess, K., Curth, A., Bauer, S., Kilbertus, N., Kohane, I.S. and van der Schaar, M., 2024. **Causal machine learning for predicting treatment outcomes**. <u>Nature Medicine</u>, 30(4), pp.958-968.

TERMINOLOGY Moving from diagnostics to therapeutics: Estimating treatment effects with ML

TERMINOLOGY Real-world data (RWD) vs. real-world evidence (RWE) to support medicine

The US Food and Drug Administration (FDA) defines ^{1,2,3}:

Real-world data (RWD)

- Data relating to patient health status and the delivery of healthcare
- Examples: electronic health records (EHRs), claims and billing activities, disease registries, ...
- Naming: observational data (≠ experimental data)

Real-world evidence (RWE)

- Analysis of RWD regarding usage and effectiveness
- Vision: greater personalization of care
- Disclaimer: should not replace but augment RCTs
- 1) Real-World Evidence Where Are We Now? <u>https://www.nejm.org/doi/full/10.1056/NEJMp2200089</u>
- 2) Real-World Evidence What Is It and What Can It Tell Us? <u>https://www.nejm.org/doi/full/10.1056/nejmsb1609216</u>
- 3) Real-World Evidence and Real-World Data for Evaluating Drug Safety and Effectiveness https://jamanetwork.com/journals/jama/fullarticle/2697359

TERMINOLOGY Real-world data (RWD) vs. real-world evidence (RWE) to support medicine

The US Food and Drug Administration (FDA) defines ^{1,2,3}:

(RWE)

- Data relating to patient health status and the delivery of healthcare
- **Examples:** electronic health records (EHRs), claims and billing activities, disease registries, ...
- Naming: observational data (≠ experimental data)
- Aim: estimate treatment effectiveness
- Challenges: representativeness (selection bias), no proper randomization, …
- Custom methodologies: target trial emulation, causal machine learning,
- Analysis of RWD regarding usage and effectiveness
- Vision: greater personalization of care
- Disclaimer: should not replace but augment RCTs
- Real-World Evidence Where Are We Now? https://www.nejm.org/doi/full/10.1056/NEJMp2200089 1)
- Real-World Evidence What Is It and What Can It Tell Us? https://www.nejm.org/doi/full/10.1056/nejmsb1609216
- Real-World Evidence and Real-World Data for Evaluating Drug Safety and Effectiveness https://jamanetwork.com/journals/jama/fullarticle/2697359 3)

Application scenarios of RWD

RWD helps to guide decision-making (beyond RCTs):

... in the absence of a standard of care

- Specific subtypes of diseases with no standard of care yet (e.g., oncology)
- New or experimental drugs (e.g., orphan drugs, is Biontech vs. Moderna vaccine more effective for subcohort X?)
- 2 ... in complex, high-dimensional decision problems
 - Complex dosaging problems (e.g., chemotherapy, combi-treatments)
- 3 ... when RCTs are unethical
 - Vulnerable populations (pregnant women, children, severely ill, etc.)¹

... when a greater personalization is desired

- Highly granular subpopulations that cannot be really placed in RCTs (e.g., women, above 60, with comorbidity X, Y & Z or generally specific patient trajectories)
 → maybe a subpopulations responds different for a specific drug, or a second line of treatment is more effective than the first line?
- Personalization based on genome data (e.g., precision medicine)

EXAMPLE Real-world data (RWD) vs. real-world evidence (RWE) to support medicine

Why is getting a meaningful RWE challenging?

EXAMPLE Real-world data (RWD) vs. real-world evidence (RWE) to support medicine

Why is getting a meaningful RWE challenging?

Understanding heterogeneity in the treatment effect

- Focus is often on average treatment effect (ATE)
- ATE is aggregated across the population
- ATE cannot tell whether a treatment works for some or not

 \rightarrow e.g., medication works only for women but not for men, but RCT was done with all patients

 NB: both RCTs and target trial emulation focus on ATEs

To personalize treatment recommendations, we need to understand the individualized treatment effect (ITE)

Munich Center for Machine Learning

Short introduction to causal machine learning

Reference:

Feuerriegel, S., Frauen, D., Melnychuk, V., Schweisthal, J., Hess, K., Curth, A., Bauer, S., Kilbertus, N., Kohane, I.S. and van der Schaar, M., 2024. Causal machine learning for predicting treatment outcomes. Nature Medicine, 30(4), pp.958-968.

PRIMER Ladder of causation

	Level	Typical	Typical Questions	Examples
	(Symbol)	Activity		
	1. Association	Seeing	What is?	What does a symptom tell me
	P(y x)		How would seeing X	about a disease?
	96.4 01 61		change my belief in Y ?	What does a survey tell us
				about the election results?
Pearl's	2. Intervention	Doing	What if?	What if I take aspirin, will my
layers of	P(y do(x),z)	Intervening	What if I do X ?	headache be cured?
causation				What if we ban cigarettes?
	3. Counterfactuals	Imagining,	Why?	Was it the aspirin that
	$P(y_x x',y')$	Retrospection	Was it X that caused Y ?	stopped my headache?
			What if I had acted	Would Kennedy be alive had
			differently?	Oswald not shot him?
				What if I had not been smok-
				ing the past 2 years?

Causal Hierarchy Theorem: statistical inference for a layer requires the information from the same or higher layer. For the inference from lower layer data, we need to make **additional assumptions**.

¹ Elias Bareinboim et al. "On Pearl's hierarchy and the foundations of causal inference". In: Probabilistic and Causal Inference: The Works of Judea Pearl. Association for Computing Machinery, 2022, pp. 507–556.

PRIMER Ladder of causation

	Level (Symbol)	Typical Activity	Typical Questions	Examples	Traditional ML	
	1. Association $P(y x)$	Seeing	What is? How would seeing X change my belief in Y ?	What does a symptom tell me about a disease? What does a survey tell us about the election results?		
Pearl's layers of causation	2. Intervention $P(y do(x), z)$	Doing Intervening	What if? What if I do X?	What if I take aspirin, will my headache be cured? What if we ban cigarettes?		
	3. Counterfactuals $P(y_x x',y')$	Imagining, Retrospection	Why? Was it X that caused Y? What if I had acted differently?	Was it the stopped my Would Kenn Oswald not What if I have ing the past	ne aspirin that headache? nedy be alive had shot him? d not been smok- 2 years?	

Causal Hierarchy Theorem: statistical inference for a layer requires the information from the same or higher layer. For the inference from lower layer data, we need to make **additional assumptions**.

¹ Elias Bareinboim et al. "On Pearl's hierarchy and the foundations of causal inference". In: Probabilistic and Causal Inference: The Works of Judea Pearl. Association for Computing Machinery, 2022, pp. 507–556.

PRIMER Ladder of causation

	Level (Symbol) 1. Association P(y x)	Typical Activity Seeing	Typical Questions What is? How would seeing X change my belief in Y ?	Examples What does a symptom tell me about a disease? What does a s about the electi
Pearl's layers of causation	2. Intervention $P(y do(x), z)$	Doing Intervening	What if? What if I do X ?	What if I take aspirin, will my headache be cured? What if we ban cigarettes?
	3. Counterfactuals $P(y_x x',y')$	Imagining, Retrospection	Why? Was it X that caused Y? What if I had acted differently?	Was it the aspirin that stopped my headache? Would Kennedy be alive had Oswald not shot him? What if I had not been smok- ing the past 2 years?

Causal Hierarchy Theorem: statistical inference for a layer requires the information from the same or higher layer. For the inference from lower layer data, we need to make **additional assumptions**.

¹ Elias Bareinboim et al. "On Pearl's hierarchy and the foundations of causal inference". In: Probabilistic and Causal Inference: The Works of Judea Pearl. Association for Computing Machinery, 2022, pp. 507–556.

Estimating the potential outcomes of treatments

- Given i.i.d. observational dataset
 - x covariates

- (binary) treatments
- *Y* continuous (factual) outcomes

 $\mathcal{D} = \{x_i, a_i, y_i\}_{i=1}^n \sim \mathbb{P}(X, A, Y)$

•	We want to identify & estimate
	treatment outcomes:

• treatment effects

$$Y[1] - Y[0]$$

• potential outcomes (separately) Y[0]

Y[1]

• Fundamental problem: never observing both potential outcomes!

Patient	Covariates	Potential outcomes $Y(0)$ $Y(1)$		Treatment effect $Y(1) - Y(0)$	
2		?	?	?	
2		?	?	?	
•••	•••	•••		•••	

Problem formulation

Traditional ML vs. Causal ML

PRIMER Causal ML Workflow

PRIMER Causal ML Workflow

PROBLEM SETUP Causal quantities of interest

PROBLEM SETUP Assumption frameworks

PROBLEM SETUP Assumption frameworks: SCMs and causal graphs

PROBLEM SETUP Assumption frameworks: Potential outcomes framework

PROBLEM SETUP Assumption frameworks

PROBLEM SETUP Example of a case study

Aim: estimate heterogeneous treatment effect of development aid on SDG outcomes

- Treatment A: development aid earmarked to end the HIV/AIDS epidemic
- Outcome Y: relative reduction in HIV infection rate
- Covariates X: control for differences in country characteristics

Causal graph	Causal quantity of interest	Assumptions
X_1 X_2 \dots X_p A Y	$\mu_a(x) = \mathbb{E}(Y[a] \mid x)$ conditional average potential outcome (CAPO)	Consistency: $Y = Y(a)$ if $A = a$ Positivity: $0 < p(A = a \mid X = x) < 1, \forall a \in A$ Ignorability: $Y(a) \perp A \mid X = x, \forall a \in A$

Primer: Identification vs. Estimation

Estimation

(finite data)

$$\mathcal{D} = \{x_i, a_i, y_i\}_{i=1}^n \sim \mathbb{P}(X, A, Y)$$

$$\hat{\mu}_{a,A-IPTW} = \frac{1}{n} \sum_{i=1}^n \frac{a_i = a}{\hat{\pi}_a(x_i)} \left(y_i - \hat{\mu}_a(x_i)\right) + \hat{\mu}_a(x_i)$$

$$\hat{\mu}_a = \mathbb{E}(\mathbb{E}[Y \mid a, X])$$

$$\mu_a = \mathbb{E}\left[\frac{1(A=a)}{\pi_a(X)}Y\right]$$

$$\text{identification formulas}$$

$$\hat{\mu}_a = \mathbb{E}\left[\frac{1(A=a)}{\pi_a(X)}Y\right]$$

PRIMER Causal ML Workflow

	Define a research question & collect data		
Problem setup	Define a causal quantity of interest	Causal ML	Choose & fit treatment effect predictor
	▼(iii) unconfoundedness		Interpret the results

Open problems

 $iggl[egin{array}{c} \mu_a(x) = \mathbb{E}(Y[a] \mid x) \end{array} iggr]$

- conditional average potential outcome (CAPO)
- Selection bias: parts of the population rarely gets treated

Challenges

$$au(x) = \mathbb{E}(Y[1] - Y[0] \mid x)$$

conditional average treatment effect (CATE)

 Selection bias: parts of the population rarely gets treated

Open problems

 $igg[\mu_a(x) = \mathbb{E}(Y[a] \mid x) igg]$

- conditional average potential outcome (CAPO)
- Selection bias: parts of the population rarely gets treated

Challenges

$$au(x) = \mathbb{E}(Y[1] - Y[0] \mid x)$$

conditional average treatment effect (CATE)

- Selection bias: parts of the population rarely gets treated
- Fundamental problem: never observing a difference of potential outcomes

Open problems

 $igg[egin{array}{c} \mu_a(x) = \mathbb{E}(Y[a] \mid x) \end{array} igg]$

- conditional average potential outcome (CAPO)
- Selection bias: parts of the population rarely gets treated

Challenges

$$au(x) = \mathbb{E}(Y[1] - Y[0] \mid x)$$

conditional average treatment effect (CATE)

- Selection bias: parts of the population rarely gets treated
- Fundamental problem: never observing a difference of potential outcomes
- How to effectively address selection bias?

Open problems How to incorporate inductive biases, e.g., regularize CAPO / CATE models?

causal ml Methods

Metalearners - Meta-learners (Kunzel 2019) are model-agnostic methods for CATE estimation

Can be used for treatment effect estimation in combination with an arbitrary ML model of choice (e.g., a decision tree, a neural network)

Model-based learners

- Model-specific methods make adjustments to existing ML models to address statistical challenges arising in treatment effect estimation
- Prominent examples are the causal tree (Athey 2016) and the causal forest (Wager 2018, Athey 2019)
- Others adapt representation learning to leverage neural networks (Shalit 2017, Shi 2019)

^{1.} Künzel, Sören R., et al. "Metalearners for estimating heterogeneous treatment effects using machine learning." Proceedings of the national academy of sciences 116.10 (2019): 4156-4165.

^{2.} Athey, Susan, and Guido Imbens. "Recursive partitioning for heterogeneous causal effects." Proceedings of the National Academy of Sciences 113.27 (2016): 7353-7360.

^{3.} Athey, Susan, and Stefan Wager. "Estimating treatment effects with causal forests: An application." Observational studies 5.2 (2019): 37-51.

^{4.} Shalit, Uri, Fredrik D. Johansson, and David Sontag. "Estimating individual treatment effect: generalization bounds and algorithms." International conference on machine learning. PMLR, 2017.

^{5.} Shi, Claudia, David Blei, and Victor Veitch. "Adapting neural networks for the estimation of treatment effects." Advances in neural information processing systems 32 (2019).

causal ml Methods

	One-stage learners	 "Plug-in learners": fit a single regression model with a treatment as an input or two regression models for each treated and control sub-groups Examples: S-learner and T-learner 		
learners	Two-stage learners	 Two-stages of learning: derive and estimate pseudo-outcomes as surrogates, which has the same expected value as the CATE Examples: DR-learner and R-learner 		
Model-based learners	 Model-specific methods make adjustments to existing ML models to address statistical challenges arising in treatment effect estimation Prominent examples are the causal tree (Athey 2016) and the causal forest (Wager 2018, Athe 2019) Others adapt representation learning to leverage neural networks (Shalit 2017, Shi 2019) 			

^{1.} Künzel, Sören R., et al. "Metalearners for estimating heterogeneous treatment effects using machine learning." Proceedings of the national academy of sciences 116.10 (2019): 4156-4165.

^{2.} Athey, Susan, and Guido Imbens. "Recursive partitioning for heterogeneous causal effects." Proceedings of the National Academy of Sciences 113.27 (2016): 7353-7360.

^{3.} Athey, Susan, and Stefan Wager. "Estimating treatment effects with causal forests: An application." Observational studies 5.2 (2019): 37-51.

^{4.} Shalit, Uri, Fredrik D. Johansson, and David Sontag. "Estimating individual treatment effect: generalization bounds and algorithms." International conference on machine learning. PMLR, 2017.

^{5.} Shi, Claudia, David Blei, and Victor Veitch. "Adapting neural networks for the estimation of treatment effects." Advances in neural information processing systems 32 (2019).

causal ml Methods

	One-stage learners	 "Plug-in learners": fit a single regression model with a treatment as an input or two regression models for each treated and control sub-groups Examples: S-learner and T-learner 		
learners	Two-stage learners	 Two-stages of learning: derive and estimate pseudo-outcomes as surrogates, which has the same expected value as the CATE Examples: DR-learner and R-learner 		
Model-based learners	 Model-specific methods make adjustments to existing ML models to address statistical challenges arising in treatment effect estimation Prominent examples are the causal tree (Athey 2016) and the causal forest (Wager 2018, Athe 2019) Others adapt representation learning to leverage neural networks (Shalit 2017, Shi 2019) 			

^{1.} Künzel, Sören R., et al. "Metalearners for estimating heterogeneous treatment effects using machine learning." Proceedings of the national academy of sciences 116.10 (2019): 4156-4165.

^{2.} Athey, Susan, and Guido Imbens. "Recursive partitioning for heterogeneous causal effects." Proceedings of the National Academy of Sciences 113.27 (2016): 7353-7360.

^{3.} Athey, Susan, and Stefan Wager. "Estimating treatment effects with causal forests: An application." Observational studies 5.2 (2019): 37-51.

^{4.} Shalit, Uri, Fredrik D. Johansson, and David Sontag. "Estimating individual treatment effect: generalization bounds and algorithms." International conference on machine learning. PMLR, 2017.

^{5.} Shi, Claudia, David Blei, and Victor Veitch. "Adapting neural networks for the estimation of treatment effects." Advances in neural information processing systems 32 (2019).

CAUSAL ML One-stage and two-stage meta-learners

Example: meta-learners for CATE

$$au(x) = \mathbb{E}(Y[1] - Y[0] \mid x)$$
conditional average treatment effect (CATE)

Method: Using any ML model to fit relevant parts of the observed distribution, namely, **nuisance functions**. Then, we can use the nuisance functions estimators for the final CATE model.

CAUSAL ML Comparison of meta-learners

CAUSAL ML Model-based learners: Representation learning

Example: TarNET / CFRNet for CATE

$$au(x) = \mathbb{E}(Y[1] - Y[0] \mid x)$$
conditional average treatment effect (CATE)

Method: Learning a low-dimensional (balanced) representation Φ () of high-dimensional covariates. Then, we can fit a CATE model based on the representations.

CAUSAL ML Model-based learners: Representation learning

Example: TarNET / CFRNet for CATE

$$au(x) = \mathbb{E}(Y[1] - Y[0] \mid x)$$
conditional average treatment effect (CATE)

Method: Learning a low-dimensional (balanced) representation Φ () of high-dimensional covariates. Then, we can fit a CATE model based on the representations.

B. Comparison between estimating treatment effects from RCTs and from observational data

Munich Center for Machine Learning

Where we are (and what is still needed): Current state of causal ML research

PRIMER Causal ML Workflow

CAUSAL ML Extensions & Open research problems

1 Model validity	 Selection and validation of CATE models Unlike traditional ML, we do not have a ground truth validation subset Robustness checks wrt. violation of assumptions Sensitivity models Spillover effects 	Hidden confounding (iii) unconfoundedness
2 Flexibility	 Extensions to more complicated settings continuous / high-dimensional treatments time-varying potential outcomes and treatment effects Data fusion from multiple environments Constrained ML: interpretability, privacy enforcement 	$(\mathbf{F}) = \underbrace{\mathbf{Observed factual outcomes}}_{under} (\mathbf{A} \otimes \mathbf{O} \otimes \mathbf{O}) \sim \mathbf{P}(\mathbf{A}_t \mathbf{H}_t)$ $(\mathbf{A} \otimes \mathbf{O} \otimes \mathbf{O} \otimes \mathbf{O})$ $(\mathbf{A} \otimes \mathbf{O} \otimes \mathbf{O} \otimes \mathbf{O})$ $(\mathbf{A} \otimes \mathbf{O} \otimes \mathbf{O} \otimes \mathbf{O})$ $(\mathbf{A} \otimes \mathbf{O} \otimes \mathbf{O} \otimes \mathbf{O} \otimes \mathbf{O})$ $(\mathbf{A} \otimes \mathbf{O} \otimes \mathbf{O} \otimes \mathbf{O} \otimes \mathbf{O} \otimes \mathbf{O})$ $(\mathbf{A} \otimes \mathbf{O} \otimes \mathbf{O}$ $(\mathbf{A} \otimes \mathbf{O} \otimes \mathbf{O}$ $(\mathbf{A} \otimes \mathbf{O} \otimes $
3 Uncertainty quantification	 Uncertainty quantification uncertainty of estimation (aka confidence intervals) predictive uncertainty (aka predictive intervals) 	Studied of the stimate of the stimat

EXTENSIONS & OPEN RESEARCH QUESTIONS Model validity: Robustness checks wrt. violation of assumptions

EXTENSIONS & OPEN RESEARCH QUESTIONS Flexibility: Causal ML for predicting outcomes over time

Melnychuk, Valentyn, Dennis Frauen, and Stefan Feuerriegel. "Causal transformer for estimating counterfactual outcomes." International Conference on Machine Learning. PMLR, 2022.

EXTENSIONS & OPEN RESEARCH QUESTIONS Flexibility: Continuous / high-dimensional treatments

EXTENSIONS & OPEN RESEARCH QUESTIONS Uncertainty quantification

Identifying predictive biomarkers (=treatment responders)

VISION Promises of Causal ML

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

LMU MUNICH

SCHOOL OF MANAGEMENT INSTITUTE OF AI IN MANAGEMENT

Institute of Al in Management Prof. Dr. Stefan Feuerriegel

http://www.ai.bwl.lmu.de

@stfeuerriegel in stefan-feuerriegel

Artificial intelligence | Impact